Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(7): e1010857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494383

RESUMO

Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.


Assuntos
Borrelia burgdorferi , Borrelia burgdorferi/genética , Plasmídeos/genética , Replicon/genética , Genoma Bacteriano , Telômero , Proteínas de Bactérias/genética , DNA Bacteriano/genética
2.
Nat Commun ; 14(1): 1913, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024496

RESUMO

DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Ciclo Celular , DNA/genética , DNA/metabolismo , Pareamento Cromossômico , Reparo do DNA
3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066390

RESUMO

Borrelia burgdorferi , a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/SMC. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that SMC and the SMC-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC . Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.

4.
Proc Natl Acad Sci U S A ; 120(11): e2210480120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897969

RESUMO

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Animais , Camundongos , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Mamíferos/genética
5.
Nature ; 606(7912): 197-203, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585235

RESUMO

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , DNA , Proteínas de Manutenção de Minicromossomo , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , Fase G1 , Células HCT116 , Humanos , Camundongos , Componente 3 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Science ; 376(6592): 496-501, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35420890

RESUMO

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and loop-extruding cohesins, but the live dynamics of loop formation and stability remain unknown. Here, we directly visualized chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantified looping dynamics by Bayesian inference. Unexpectedly, the Fbn2 loop was both rare and dynamic, with a looped fraction of approximately 3 to 6.5% and a median loop lifetime of approximately 10 to 30 minutes. Our results establish that the Fbn2 TAD is highly dynamic, and about 92% of the time, cohesin-extruded loops exist within the TAD without bridging both CTCF boundaries. This suggests that single CTCF boundaries, rather than the fully CTCF-CTCF looped state, may be the primary regulators of functional interactions.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Animais , Teorema de Bayes , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Camundongos
7.
Nat Struct Mol Biol ; 28(8): 642-651, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312537

RESUMO

Chromosome organization mediated by structural maintenance of chromosomes (SMC) complexes is vital in many organisms. SMC complexes act as motors that extrude DNA loops, but it remains unclear what happens when multiple complexes encounter one another on the same DNA in living cells and how these interactions may help to organize an active genome. We therefore created a crash-course track system to study SMC complex encounters in vivo by engineering defined SMC loading sites in the Bacillus subtilis chromosome. Chromosome conformation capture (Hi-C) analyses of over 20 engineered strains show an amazing variety of chromosome folding patterns. Through three-dimensional polymer simulations and theory, we determine that these patterns require SMC complexes to bypass each other in vivo, as recently seen in an in vitro study. We posit that the bypassing activity enables SMC complexes to avoid traffic jams while spatially organizing the genome.


Assuntos
Bacillus subtilis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Bacteriano/genética , Conformação de Ácido Nucleico , Proteínas de Ligação a DNA/metabolismo , Genoma Bacteriano/genética , Complexos Multiproteicos/metabolismo
8.
Mol Cell ; 81(4): 756-766.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33472056

RESUMO

Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , Integrases/metabolismo , Staphylococcus aureus/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , DNA Primase/genética , DNA Primase/metabolismo , Integrases/genética , Staphylococcus aureus/genética
9.
Curr Opin Cell Biol ; 70: 18-26, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33310227

RESUMO

Mammalian genomes are organized and regulated through long-range chromatin interactions. Structural loops formed by CCCTC-binding factor (CTCF) and cohesin fold the genome into domains, while enhancers interact with promoters across vast genomic distances to regulate gene expression. Although genomics and fixed-cell imaging approaches help illuminate many aspects of chromatin interactions, temporal information is usually lost. Here, we discuss how 3D super-resolution live-cell imaging (SRLCI) can resolve open questions on the dynamic formation and dissolution of chromatin interactions. We discuss SRLCI experimental design, implementation strategies, and data interpretation and highlight associated pitfalls. We conclude that, while technically demanding, SRLCI approaches will likely emerge as a critical tool to dynamically probe 3D genome structure and function and to study enhancer-promoter interactions and chromatin looping.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Genoma , Genômica , Regiões Promotoras Genéticas
10.
Elife ; 92020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250245

RESUMO

SMC complexes, such as condensin or cohesin, organize chromatin throughout the cell cycle by a process known as loop extrusion. SMC complexes reel in DNA, extruding and progressively growing DNA loops. Modeling assuming two-sided loop extrusion reproduces key features of chromatin organization across different organisms. In vitro single-molecule experiments confirmed that yeast condensins extrude loops, however, they remain anchored to their loading sites and extrude loops in a 'one-sided' manner. We therefore simulate one-sided loop extrusion to investigate whether 'one-sided' complexes can compact mitotic chromosomes, organize interphase domains, and juxtapose bacterial chromosomal arms, as can be done by 'two-sided' loop extruders. While one-sided loop extrusion cannot reproduce these phenomena, variants can recapitulate in vivo observations. We predict that SMC complexes in vivo constitute effectively two-sided motors or exhibit biased loading and propose relevant experiments. Our work suggests that loop extrusion is a viable general mechanism of chromatin organization.


The different molecules of DNA in a cell are called chromosomes, and they change shape dramatically when cells divide. Ordinarily, chromosomes are packaged by proteins called histones to make thick fibres called chromatin. Chromatin fibres are further folded into a sparse collection of loops. These loops are important not only to make genetic material fit inside a cell, but also to make distant regions of the chromosomes interact with each other, which is important to regulate gene activities. The fibres compact to prepare for cell division: they fold into a much denser series of loops. This is a remarkable physical feat in which tiny protein machines wrangle lengthy strands of DNA. A process called loop extrusion could explain how chromatin folding works. In this process, ring-like protein complexes known as SMC complexes would act as motors that can form loops. SMC complexes could bind a chromatin fibre and reel it in to form the loops, with the density of loops increasing before cell division to further compact the chromosomes. Looping by SMC complexes has been observed in a variety of cell types, including mammalian and bacterial cells. From these studies, loop extrusion is generally assumed to be 'two-sided'. This means that each SMC complex reels in the chromatin on both sides of it, thus growing the chromatin loop. However, imaging individual SMC complexes bound to single molecules of DNA showed that extrusion can be asymmetric, or 'one-sided'. These observations show the SMC complex remains anchored in place and the chromatin is reeled in and extruded by only one side of the complex. So Banigan, van den Berg, Brandão et al. created a computer model to test whether the mechanism of one-sided extrusion could produce chromosomes that are organised, compact, and ready for cell division, like two-sided extrusion can. To answer this question, Banigan, van den Berg, Brandão et al. analysed imaging experiments and data that had been collected using a technique that captures how chromatin fibres are arranged inside cells. This was paired with computer simulations of chromosomes bound by SMC protein complexes. The simulations and analysis found that the simplest one-sided loop extrusion complexes generally cannot reproduce the same patterns of chromatin loops as two-sided complexes. However, a few specific variations of one-sided extrusion can actually recapitulate correct chromatin folding and organisation. These results show that some aspects of chromosome organization can be attained by one-sided extrusion, but many require two-sided extrusion. Banigan, van den Berg, Brandão et al. explain how the simulated mechanisms of loop extrusion could be consistent with seemingly contradictory observations from different sets of experiments. Altogether, they demonstrate that loop extrusion is a viable general mechanism to explain chromatin organisation, and that it likely possesses physical capabilities that have yet to be observed experimentally.


Assuntos
Cromossomos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Cromatina/química , Cromossomos Bacterianos/química , Interfase , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular
11.
Proc Natl Acad Sci U S A ; 116(41): 20489-20499, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548377

RESUMO

To separate replicated sister chromatids during mitosis, eukaryotes and prokaryotes have structural maintenance of chromosome (SMC) condensin complexes that were recently shown to organize chromosomes by a process known as DNA loop extrusion. In rapidly dividing bacterial cells, the process of separating sister chromatids occurs concomitantly with ongoing transcription. How transcription interferes with the condensin loop-extrusion process is largely unexplored, but recent experiments have shown that sites of high transcription may directionally affect condensin loop extrusion. We quantitatively investigate different mechanisms of interaction between condensin and elongating RNA polymerases (RNAPs) and find that RNAPs are likely steric barriers that can push and interact with condensins. Supported by chromosome conformation capture and chromatin immunoprecipitation for cells after transcription inhibition and RNAP degradation, we argue that translocating condensins must bypass transcribing RNAPs within ∼1 to 2 s of an encounter at rRNA genes and within ∼10 s at protein-coding genes. Thus, while individual RNAPs have little effect on the progress of loop extrusion, long, highly transcribed operons can significantly impede the extrusion process. Our data and quantitative models further suggest that bacterial condensin loop extrusion occurs by 2 independent, uncoupled motor activities; the motors translocate on DNA in opposing directions and function together to enlarge chromosomal loops, each independently bypassing steric barriers in their path. Our study provides a quantitative link between transcription and 3D genome organization and proposes a mechanism of interactions between SMC complexes and elongating transcription machinery relevant from bacteria to higher eukaryotes.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Bacteriano , Complexos Multiproteicos/metabolismo , RNA Ribossômico/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , RNA Ribossômico/química , RNA Ribossômico/genética
12.
ACS Nano ; 13(10): 11955-11966, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31513377

RESUMO

Super-resolution fluorescence imaging based on localization microscopy requires tuning the photoblinking properties of fluorescent dyes employed. Missing is a rapid way to analyze the blinking rates of the fluorophore probes. Herein we present an ensemble autocorrelation technique for rapidly and simultaneously measuring photoblinking and bleaching rate constants from a microscopy image time series of fluorescent probes that is significantly faster than individual single-molecule trajectory analysis approaches. Our method is accurate for probe densities typically encountered in single-molecule studies as well as for higher density systems which cannot be analyzed by standard single-molecule techniques. We also show that we can resolve characteristic blinking times that are faster than camera detector exposure times, which cannot be accessed by threshold-based single-molecule approaches due to aliasing. We confirm this through computer simulation and single-molecule imaging data of DNA-Cy5 complexes. Finally, we demonstrate that with sufficient sampling our technique can accurately recover rates from stochastic optical reconstruction microscopy super-resolution data.

13.
Cell ; 176(6): 1502-1515.e10, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799036

RESUMO

Several general principles of global 3D genome organization have recently been established, including non-random positioning of chromosomes and genes in the cell nucleus, distinct chromatin compartments, and topologically associating domains (TADs). However, the extent and nature of cell-to-cell and cell-intrinsic variability in genome architecture are still poorly characterized. Here, we systematically probe heterogeneity in genome organization. High-throughput optical mapping of several hundred intra-chromosomal interactions in individual human fibroblasts demonstrates low association frequencies, which are determined by genomic distance, higher-order chromatin architecture, and chromatin environment. The structure of TADs is variable between individual cells, and inter-TAD associations are common. Furthermore, single-cell analysis reveals independent behavior of individual alleles in single nuclei. Our observations reveal extensive variability and heterogeneity in genome organization at the level of individual alleles and demonstrate the coexistence of a broad spectrum of genome configurations in a cell population.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/genética , Componentes Genômicos/fisiologia , Linhagem Celular , Núcleo Celular/genética , Cromossomos , Fibroblastos/fisiologia , Genoma/genética , Componentes Genômicos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Análise de Célula Única
14.
Mol Cell ; 71(5): 841-847.e5, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100265

RESUMO

Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.


Assuntos
Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Complexos Multiproteicos/genética , Translocação Genética/genética , Trifosfato de Adenosina/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Mutação Puntual/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Imagem Individual de Molécula/métodos
15.
EMBO J ; 36(24): 3600-3618, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29217590

RESUMO

Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin-dependent loop extrusion generates higher-order chromatin structures within the one-cell embryo. Using snHi-C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1-cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi-C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin-dependent loop extrusion organizes mammalian genomes over multiple scales from the one-cell embryo onward.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Genoma/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Proteínas de Ligação a DNA , Epigenômica , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/genética , Zigoto
16.
Nature ; 544(7648): 110-114, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28355183

RESUMO

Chromatin is reprogrammed after fertilization to produce a totipotent zygote with the potential to generate a new organism. The maternal genome inherited from the oocyte and the paternal genome provided by sperm coexist as separate haploid nuclei in the zygote. How these two epigenetically distinct genomes are spatially organized is poorly understood. Existing chromosome conformation capture-based methods are not applicable to oocytes and zygotes owing to a paucity of material. To study three-dimensional chromatin organization in rare cell types, we developed a single-nucleus Hi-C (high-resolution chromosome conformation capture) protocol that provides greater than tenfold more contacts per cell than the previous method. Here we show that chromatin architecture is uniquely reorganized during the oocyte-to-zygote transition in mice and is distinct in paternal and maternal nuclei within single-cell zygotes. Features of genomic organization including compartments, topologically associating domains (TADs) and loops are present in individual oocytes when averaged over the genome, but the presence of each feature at a locus varies between cells. At the sub-megabase level, we observed stochastic clusters of contacts that can occur across TAD boundaries but average into TADs. Notably, we found that TADs and loops, but not compartments, are present in zygotic maternal chromatin, suggesting that these are generated by different mechanisms. Our results demonstrate that the global chromatin organization of zygote nuclei is fundamentally different from that of other interphase cells. An understanding of this zygotic chromatin 'ground state' could potentially provide insights into reprogramming cells to a state of totipotency.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Posicionamento Cromossômico , Oócitos/citologia , Análise de Célula Única/métodos , Zigoto/citologia , Animais , Núcleo Celular/genética , Transdiferenciação Celular , Reprogramação Celular , Cromatina/química , Cromatina/genética , Feminino , Haploidia , Interfase , Herança Materna/genética , Camundongos , Conformação de Ácido Nucleico , Oócitos/metabolismo , Herança Paterna/genética , Processos Estocásticos , Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/metabolismo , Zigoto/metabolismo
17.
Science ; 355(6324): 524-527, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154080

RESUMO

Structural maintenance of chromosomes (SMC) complexes play critical roles in chromosome dynamics in virtually all organisms, but how they function remains poorly understood. In the bacterium Bacillus subtilis, SMC-condensin complexes are topologically loaded at centromeric sites adjacent to the replication origin. Here we provide evidence that these ring-shaped assemblies tether the left and right chromosome arms together while traveling from the origin to the terminus (>2 megabases) at rates >50 kilobases per minute. Condensin movement scales linearly with time, providing evidence for an active transport mechanism. These data support a model in which SMC complexes function by processively enlarging DNA loops. Loop formation followed by processive enlargement provides a mechanism by which condensin complexes compact and resolve sister chromatids in mitosis and by which cohesin generates topologically associating domains during interphase.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/química , DNA Bacteriano/química , DNA Bacteriano/metabolismo
19.
Cell Rep ; 16(8): 2156-2168, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524610

RESUMO

Cell polarity arises through the spatial segregation of polarity regulators. PAR proteins are polarity regulators that localize asymmetrically to two opposing cortical domains. However, it is unclear how the spatially segregated PAR proteins interact to maintain their mutually exclusive partitioning. Here, single-molecule detection analysis in Caenorhabditis elegans embryos reveals that cortical PAR-2 diffuses only short distances, and, as a result, most PAR-2 molecules associate and dissociate from the cortex without crossing into the opposing domain. Our results show that cortical PAR-2 asymmetry is maintained by the local exchange reactions that occur at the cortical-cytoplasmic boundary. Additionally, we demonstrate that local exchange reactions are sufficient to maintain cortical asymmetry in a parameter-free mathematical model. These findings suggest that anterior and posterior PAR proteins primarily interact through the cytoplasmic pool and not via cortical diffusion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Embrião não Mamífero/metabolismo , Modelos Estatísticos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Compartimento Celular , Polaridade Celular , Citoplasma/ultraestrutura , Embrião não Mamífero/citologia , Regulação da Expressão Gênica , Cinética , Fosforilação , Transporte Proteico , Imagem Individual de Molécula
20.
Methods ; 66(2): 273-82, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938869

RESUMO

Accurate measurements of kinetic rate constants for interacting biomolecules are crucial for understanding the mechanisms underlying intracellular signalling pathways. The magnitude of binding rates plays a very important molecular regulatory role which can lead to very different cellular physiological responses under different conditions. Here, we extend the k-space image correlation spectroscopy (kICS) technique to study the kinetic binding rates of systems wherein: (a) fluorescently labelled, free ligands in solution interact with unlabelled, diffusing receptors in the plasma membrane and (b) systems where labelled, diffusing receptors are allowed to bind/unbind and interconvert between two different diffusing states on the plasma membrane. We develop the necessary mathematical framework for the kICS analysis and demonstrate how to extract the relevant kinetic binding parameters of the underlying molecular system from fluorescence video-microscopy image time-series. Finally, by examining real data for two model experimental systems, we demonstrate how kICS can be a powerful tool to measure molecular transport coefficients and binding kinetics.


Assuntos
Simulação de Acoplamento Molecular , Animais , Células COS , Chlorocebus aethiops , Toxina da Cólera/química , Proteínas do Domínio Duplacortina , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Humanos , Cinética , Ligantes , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...